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Abstract

Two-parameter equations that describe the dependence of lnk uponϕ, wherek is the retention factor andϕ the volume fraction of the organic
modifier in the mobile phase, are examined in what concerns the underlying approximations and their performance to fit experimental data
obtained from reversed-phase liquid chromatography. Using 293 experimental systems, it was found that the performance of these equations
to describe lnk versusϕ data is rather low, since the percentage of the systems that can be described satisfactorily ranges from 40 to 60%
depending on the fitting equation. This percentage may be raised to 75%, if the discreteness effect is properly taken into account. A further
improvement to 90% of the systems studied can be achieved only by the use of three-parameter equations, which may arise by refinements of
the rough approximations of the two-parameter equations. Although the refinements do not lead always to better equations, we developed a
new three-parameter expression of lnk that works more satisfactorily, since it combines simplicity, linearity of its adjustable parameters and
the highest applicability.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of the accurate representation of retention
time, tR, versusϕ data, whereϕ is the volume fraction of
the organic modifier in the mobile phase, is of high im-
portance in liquid chromatography and in particular in de-
signing proper optimisation techniques. In the conventional
approach, the originaltR versusϕ data is transformed into
ln k versusϕ data, wherek is the retention factor, and these
data are modelled using various empirical or strict theoret-
ical equations. The tendency is to use as simple equations
as possible in order to avoid numerical difficulties and re-
duce the number of experiments needed for an optimisation
technique. In this trend, the two-parameter equation pro-
posed by Johnson et al.[1,2] and based on theET scale
for mobile phase polarity is extensively used for modelling
retention data especially for practical optimisation and pre-
diction techniques[1–14]. Here, we examine first whether
two-parameter equations can actually be used for an accept-
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able prediction of retention times in differentϕ values and
second, if they can be modified to increase their predictive
capabilities.

2. Theoretical part

2.1. Two-parameter equations

Retention in reversed-phase liquid chromatographic
columns is ruled by the solute multiple interactions with
both the stationary and the mobile phase constituents. De-
spite the complex nature of these interactions that may lead
to different retention mechanisms, a common observation
is that retention increases with the increase in mobile phase
polarity. This observation has led Dorsey and co-workers to
suggest the following linear relationship between lnk and
the polarity of the mobile phase expressed through theEN

T
solvatochromic parameter[1,2]:

ln k = m + nEN
T (1)

wherem and n are adjustable parameters characteristic of
the solute properties. Note that initially the polarity of the
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mobile phase was expressed through the non-normalised
ET(30) scale[1–6], which later was replaced by the nor-
malisedEN

T parameter[7,8].
Another two-parameter equation comes from the adsorp-

tion model for the retention mechanism developed in[15]
and it may be written as:

ln k = a − ln(1 + bϕ) − cϕ

1 + bϕ
(2)

wherea, b andc are adjustable parameters.Eq. (2)seems to
be a three-parameter equation but, according to the theory
[15,16], parameterb depends only upon the modifier. Conse-
quently, it is, in fact, a two-parameter equation provided that
a properb value has been determined for a certain modifier.

Finally, it can be easily shown by numerical examples
that the function ln(1+ bϕ) can be effectively represented
by the rational function:

f(ϕ) = qϕ

1 + bϕ
(3)

especially forb < 2. It is seen that the term ln(1+ bϕ) of
Eq. (2)may be absorbed by the last term of the right-hand
side of this equation and this observation has led us to ex-
amine whether the following simple equation:

ln k = a − cϕ

1 + bϕ
(4)

can be also used as a two-parameter equation by assuming
a constantb value for each modifier. It is evident that when
Eqs. (2) and (4)are applied to experimental data, parameters
a, b andc are treated as adjustable parameters and therefore
these parameters and especially parameterc are unlikely to
take common values in the two equations.Eq. (4)is further
simplified to:

ln k = a′ + c′

1 + bϕ
(5)

becausecϕ/(1 + bϕ) = (c/b) − ((c/b)/(1 + bϕ)).
An interesting result arises from the comparison of

Eqs. (1) and (5). If we take into account that the normalised
EN

T factor takes the value 1 atϕ = 0, we readily obtain that
m+ n = a′ + c′, which, by equating the right-hand sides of
Eqs. (1) and (5), results in the following expression ofEN

T :

EN
T = 1 + pϕ

1 + bϕ
(6)

wherep andb are constants that take certain values for each
modifier. A similar expression forEN

T has been proposed by
Roses and Bosch[7,17] who showed thatEq. (6)represents
very satisfactorily the experimental data.

Eq. (6)allows for an alternative expression ofEq. (1). If
we changeb to be in Eq. (6) for reasons explained further
and divide 1+ pϕ by 1+ beϕ, we obtain:

EN
T = 1 + pϕ

1 + beϕ
= p

be
+ (be − p)/be

1 + beϕ
(7)

which, by substitution intoEq. (1), yields:

ln k = m′ + n′

1 + beϕ
(8)

wherem′ and n′ are adjustable parameters, whereasbe is
determined from fittingEN

T versusϕ data toEq. (6). Note
thatEq. (8)is formally identical toEq. (5)and differ only in
the choice of the constantsb andbe. In Eq. (8), be necessarily
takes the value determined from fittingEN

T versusϕ data
to Eq. (6), whereas this limitation is not imposed onb of
Eq. (5) which is treated as adjustable parameter. For this
reason, we use different symbols for the constant appeared
in the denominator ofEqs. (5) and (8). Note also that when
Eq. (7) is adopted for the calculation ofEN

T values used in
Eq. (1), thenEqs. (1) and (8)give identical results.

2.2. A critique of the two-parameter equations

The two-parameterEqs. (1), (2), (4), (5) and (8)are ex-
tremely simplified expressions of lnk based on several rough
approximations. For this reason, the applicability of such
an equation to a certain class of solutes does not entail the
validity of its model and no molecular information can be
gained from its use.

A detail discussion on the approximations underlying
Eq. (2) is presented in[16]. According to it, Eq. (2) is
based on the adsorption model for the retention mechanism
and assumes: (a) the independence of the molar volumes
of the mobile phase constituents from the composition of
this phase; (b) the validity of the Langmuir isotherm for
the adsorption of the modifier on the hydrocarbon chains;
and (c) the random approximation for the solute–solvent
interactions at the adsorbed layer. It is seen that all these
assumptions are rough approximations. In particular, the va-
lidity of the Langmuir isotherm assumes an ideal behaviour
of the organic modifier–water mixture both at the adsorbed
layer and in the mobile phase, an assumption that strongly
contradicts with vapour–liquid equilibrium (VLE) tabulated
data[18], which show significant deviations from the ideal
behaviour in the mobile phase[16].

Eqs. (4) and (5)come from an empirical modification of
Eq. (2), which, in fact, eliminates the entropy contribution
to the retention mechanism (see further). Therefore, these
equations are based on the same approximations we met in
Eq. (2)and they additionally overlook entropy effects.

The limitations ofEq. (1)were first indicated by Cheong
and Carr [6] who showed that the performance of this
equation is good only over a narrow range of solvent com-
position. According to these authors, at least two solvent
parameters are needed to account for the cavity formation
and solute–solvent interactions in the mobile phase. Later,
Barbosa and co-workers[10–13] studied several classes of
solutes in acetonitrile–water mobile phases and observed
two regions and therefore two straight lines at the plots of
ln k versusEN

T showing that the singleEq. (1) is incapable
of describing the retention of these solutes. This behaviour
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was attributed to the existence of three different structural
regions in acetonitrile–water mixtures[10–13,19]. It is seen
that Cheong and Carr attribute the limitations ofEq. (1) to
the insufficient treatment of the various interactions in the
mobile phase, whereas Barbosa et al. consider the different
structural regions of acetonitrile–water mixtures as the main
responsible factor of the limitations ofEq. (1). Our view on
this issue is the following.

It is evident that the performance ofEq. (1)is associated
with the approximations involved in its derivation. From the
definition of lnk, we have lnk = −�G◦

r /RT, where�G◦
r

is the standard free energy of retention. Noting thatEN
T is a

measure of the mobile phase polarity, we readily conclude
that the termnEN

T of Eq. (1)is the energy contribution of the
solute interactions with the constituents of the mobile phase.
It is seen thatEq. (1)assumes that: (a) the only contribution
to lnk comes from solute interactions in the mobile phase;
and (b) these interactions can be represented by the product
nEN

T . Assumption (a) either disregards other contributions,
like contributions from the differences in the molecular vol-
umes of the organic modifier and the water in the mobile
phase, entropy effects and contributions from the solute in-
teractions with the constituents of the stationary phase, or
it assumes that all these contributions are independent ofϕ

and therefore they are included in the constant parameterm
of this equation. In what concerns assumption (b), it obvi-
ously disregards the discreteness of the solute–solvent inter-
actions. Therefore, the approximations on whichEq. (1) is
based disregard at least the following effects:

(i) differences in the molecular volumes of the organic
modifier and the water in the mobile phase;

(ii) discreteness effects in the various interactions;
(iii) entropy effects;
(iv) solute interactions with the constituents of the station-

ary phase.

2.2.1. Differences in the molecular volumes
In a recent paper[16], we have shown that, apart from

other contributions, the differences in the molecular volumes
of the organic modifier and the water in the mobile phase
affect lnk. Overlooking this contribution means that we ac-
cept the rough assumption that the molar volumes of the mo-
bile phase constituents are independent of the composition
of this phase, i.e. independent ofϕ. If we denote by lnkc the
part of lnk that is free from this contribution, then lnk and
ln kc are interrelated through the following equation[16]:

ln k = ln kc + ln
1 − α + αx

(1 − α)(1 + δ)
(9)

wherex is the organic modifier mole fraction,δ the percent-
age contraction of the mobile phase volume caused by the
mixing of its constituents, andα given by:

α = 1 − ρB/MB

ρw/Mw
(10)

whereρB andρw are the densities of the pure organic modi-
fier and water, respectively, andMB andMw their molecular
masses. The mole factionx is related to the volume fraction
ϕ through the following relationship[15]:

x = ϕ(1 − α)

1 + δ − ϕα
(11)

Note that δ has a very small contribution to the above
equations[16]. Therefore,δ can be eliminated without any
significant effect on the results. In this case, ifEq. (11) is
substituted intoEq. (9)and take into account that lnkc may
be expressed byEq. (1) or (8), we readily obtain that:

ln k = −ln(1 − ϕα) + m + nEN
T

= −ln(1 − ϕα) + m′ + n′

1 + beϕ
(12)

which is also a two-parameter equation. The same correc-
tion may be made toEqs. (2) and (5).

2.2.2. Discreteness effects
Each solute molecule, depending on the strength of

the solute–water and solute–modifier interactions changes
the average orientation and composition of the solvent
(water + organic modifier) molecules that surround it.
Thus, at the same mobile phase structurally different solute
molecules “see”, in fact, a different solvent environment due
to the discreteness of the solute–solvent interactions. This
discreteness effect is totally ignored when the solute–solvent
interactions are taken into account through the term
nEN

T in Eq. (1).
Qualitatively the discreteness effect is expected to have

the following consequences. An organic solute molecule
interacts attractively stronger with the molecules of the or-
ganic modifier than with the water molecules. Therefore,
the stronger these interactions are, the higher the num-
ber of the modifier molecules that surrounds each solute
molecule is expected to be. That is, the stronger the attrac-
tive solute–solvent interactions are, the higher the effective
ϕ value is, resulting in a decrease in the effectiveEN

T value.
Schematically this consequence of the discreteness effect
is shown inFig. 1. Moreover, it is shown inAppendix A
that if the effectiveEN

T versusϕ curve is still described by
Eq. (6) (or Eq. (7)), parameterb (or be) should be higher
than that of the originalEN

T versusϕ curve.
Therefore, the discreteness effect is expected to influ-

ence the value ofb in Eq. (5). Values ofb, obtained when
Eq. (5) is fitted to experimental data, close to the corre-
sponding values ofbe determined from fittingEq. (7)to ex-
perimental data is an indication that the discreteness effect
is weak. This is expected for non-polar solutes with small
molecules. However, as the molecular volume of a solute is
increased, the solute–solvent interactions become stronger,
because the number of the solute contacts with the sur-
rounding molecules is increased. Therefore, the greater the
molecular weight of a solute is, the poorer the performance
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Fig. 1. Schematic plots ofEN
T vs. ϕ in the presence (· · · ) and absence

(—) of discreteness effects.

of Eq. (1) is expected to be. In addition, if we like to ac-
count effectively for the discreteness effect, then we should
use inEq. (5), a constantb value per group of structurally
similar solutes at a certain modifier rather than a constantb
value at each modifier irrespective of the structure and the
molecular weight of the solutes. In this case, we expect the
greater the mean molecular weight of a group of structurally
similar solutes is, the higher theb value used inEq. (5)
to be.

2.2.3. Entropy effects
According to the treatment in[15,16], entropy effects con-

tribute to lnk only in case that the adsorption mechanism
plays a dominant role in the solute retention. Then, the en-
tropy contribution to lnk may be expressed as[15,16]:

�S

k
= ln

(
1 − θ

1 − ϕ

)
(13)

whereθ is the surface coverage of the hydrocarbon chains
by the modifier molecules andk the Boltzmann’s constant.
The main approximation adopted in the derivation of this
equation is that during the adsorption process each adsor-
bate (solute or modifier) molecule replaces from the ad-
sorbed layer a cluster of water molecules, which always
has dimensions equal to those of the adsorbate molecule.
Note that there are a lot of experimental and theoretical ev-
idences that this is a good approximation[20–23]. Thus,
the only problem we have to overcome is to expressθ in
terms ofϕ. However, this relationship is, in fact, the ad-
sorption isotherm concerning the adsorption of the modifier
molecules on the chains of the stationary phase. Now if we
like to keep as simple expression for lnk as possible, we are
obliged to adopt the rough approximation of the Langmuir
isotherm:

θ

1 − θ
= β

ϕ

1 − ϕ
(14)

whereβ is the adsorption equilibrium constant. Substitution
of Eq. (14)into Eq. (13)yields:

�S

k
= −ln[1 + (β − 1)ϕ] (15)

It is seen that this contribution is taken into account in
Eq. (2), which is derived from the adsorption model.

2.2.4. Contributions from the stationary phase
As a first approximation, the contribution of the solute

interactions at the stationary phase to lnk may be accounted
for by adding to the expression of lnk, a term likeqENs

T ,
whereENs

T is the correspondingEN
T factor of the stationary

phase, i.e. a measure of the polarity of this phase. It is evident
that the expression ofENs

T and therefore the contribution of
the solute interactions at the stationary phase depend on the
retention mechanism.

If the retention is due to partition,ENs
T is a constant, be-

cause the stationary phase is just the hydrocarbon chains[8].
In this case, the termqENs

T is also a constant, which can be
included in parameter m ofEq. (1). In contrast, if the re-
tention is due to adsorption, a surface solution is formed on
the chains andENs

T is the measure of its polarity, i.e. a mea-
sure of the solvent (water+organic modifier) polarity at the
surface solution of the stationary phase. Therefore, we may
assume thatENs

T is given by an expression likeEq. (6)but
with different b and p values, saybs and ps, and with the
surface coverageθ of the modifier in place ofϕ. Thus, we
are again forced to use the Langmuir isotherm,Eq. (14), to
correlateθ with ϕ. Then, we readily find thatENs

T may be
expressed as:

ENs
T = 1 + p∗ϕ

1 + b∗ϕ
(16)

wherep∗ = β(1 + ps) − 1 andb∗ = β(1 + bs) − 1.
It is evident thatp∗ andb∗ depend exclusively upon the

modifier but the problem is that they cannot be determined
by independent experimental data. Therefore, we have to use
additional approximations. The most radical approximation,
coming from the low curvature of theEN

T versusϕ curves in
the mobile phase, is to assume a linear dependence ofENs

T
uponϕ, i.e.:

ENs
T = q′ϕ (17)

A more refined approach is to assume that for non-polar so-
lutes with small molecules parametersbs andps take values
close to those ofbe andp of Eq. (7), because in this case the
discreteness effect is small and the surface solution is likely
to have a structure similar to that in the mobile phase, at
least as a first approximation. In this case, we need only the
value of the equilibrium constantβ in order to calculatep∗
andb∗ values fromp∗ = β(1+p)−1 andb∗ = β(1+be)−1
and thereforeENs

T values as a function ofϕ. This approach
is followed and described inSection 4.

We should point out that the solute/stationary phase in-
teractions can be treated explicitly by means of statistical
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mechanics [24–28] or semi-statistical mechanical ap-
proaches[15,16]. However, in these cases the final expres-
sion of lnk is very complicated and contains a great number
of adjustable parameters. Similar complicated expressions
of ln k are expected if we consider specific effects, like the
consequences of stationary phase anisotropy on the reten-
tion of shape-constrained solutes. The necessity to review
and develop in this paper as simple equations as possible
led us to disregard specific effects and adopt the above
phenomenological treatment of the various contributions
coming from stationary phase.

2.3. Three-parameter equations

If the above refinements of the two-parameter equations
are taken into account,Eq. (1) is changed to the following
expressions of lnk provided that retention is governed by
the adsorption mechanism:

ln k =m− ln(1 − αϕ)− ln[1 + (β − 1)ϕ] + nEN
T + qENs

T

(18)

ln k = m′ − ln(1 − αϕ) − ln[1 + (β − 1)ϕ]

+ n′

1 + beϕ
+ q′

1 + b∗ϕ
(19)

or

ln k = m′ − ln(1 − αϕ) − ln[1 + (β − 1)ϕ]

+ n′

1 + beϕ
+ q′ϕ (20)

If the retention is due to partition, the above equations are
reduced toEq. (12). It is seen that the adsorption model
yields expressions with at least four adjustable parameter
(m′, n′, β andq′). This number is high enough, especially if
we take into account that the approximations adopted for the
derivation of these equations are in all cases rough approx-
imations. This means that the above equations do not rep-
resent accurately the adsorption model for retention. Their
fitting performance, which is expected to be high enough,
is due to the great number of the adjustable parameters that
counterbalance the various adsorption effects contributing
to lnk.

Therefore, for practical purposes there is no need to use
the completeEqs. (18)–(20). The term ln[1+ (β − 1)ϕ]
may be absorbed by the termn′/(1 + beϕ), as shown ear-
lier by Eq. (3) and as can be easily verified by simple nu-
merical examples. In addition, the term ln(1− αϕ) may
be approximately deleted or in case ofEq. (19) it may
be absorbed by the last term,q′/(1 + b∗ϕ), for the same
reason that the entropy term is absorbed by the rational
functionn′/(1 + beϕ). Thus, we obtain two three-parameter
equations:

ln k = m′ + n′

1 + btϕ
+ q′

1 + b∗ϕ
(21)

and

ln k = m′ + n′

1 + btϕ
+ q′ϕ (22)

It is evident that these equations are three-parameter equa-
tions only if bt andb∗ are known at each mobile phase. The
process followed for the determination of these parameters
is described inSection 4. The use of the symbolbt instead
of be arises from the observation that small alterations in
the values ofbe improve the fitting performance of these
equations.

Apart fromEqs. (21) and (22), we used as three-parameter
equationsEqs. (2) and (5), by treatingb as an adjustable
parameter, and the conventional quadratic equation[16,29]:

ln k = a + bϕ + cϕ2 (23)

At this point, it is worth noting the following. Some of the
above equations are based on the partition model,Eqs. (1),
(12) and (23), the rest on the adsorption model for reten-
tion. However, as stressed many times, these equations do
not, in fact, express the properties of the partition or adsorp-
tion mechanism due to the rough approximations involved
in their derivation. For this reason, they should be treated as
simple mathematical equations applied to any system irre-
spective of the retention mechanism that governs the prop-
erties of this system. It is also evident that the results of
the present paper and, in particular, the applicability or not
of the equations we reviewed earlier, are not related to the
clarification of the retention mechanism in reversed-phase
chromatographic columns. The investigation on the origin
of the retention mechanism follows different approaches,
which are based on the elimination or the drastic reduction
in the approximations or model assumptions adopted in the
various tests (see, for example,[16,30,31]).

2.4. Fitting criteria

The performance of a certain equation to describe the
experimental data may be estimated by the value of the
standard deviationσ:

σ2 =
N∑
i=1

(ln kexp,i − ln kcalc,i)
2

N − p
(24)

where kexp,i is the ith experimental value ofk, kcalc,i the
corresponding value ofk calculated from one of the above
equations,N the total number of data points, andp the num-
ber of the adjustable parameters. Values ofσ lower than 0.2
usually correspond to good fittings.

However, a good fitting of the lnk versusϕ data does not
entail an equally good fitting of thetR versusϕ data used
in optimising or/and predictive techniques. In this case, the
best statistical criterion of the fitting oftR versusϕ data by a
certain equation is the standard deviationsσt resulting from
Eq. (24), if we replace lnk by tR. Alternatively, in cases
that tR values are not available due to the lack oft0 values,
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wheret0 is the column dead time, a measure of the predictive
capability of an equation may be the value of the following
parameter:

s = 1

N

N∑
i=1

|tRexp,i − tRcalc,i |
tRexp,i

= 1

N

N∑
i=1

|kexp,i − kcalc,i|
1 + kexp,i

(25)

If s is, for example, close to 0.1, then on an average the
absolute error in the retention time is 10%, which is high
enough. For example, for a retention time of 60 min the error
may be±6 min or even higher. Thus, a value ofs equal to
or lower than 0.05 should be used for an acceptable fitting.

3. Experimental

In order to test the above equations, a wide number of
solutes (293) in mobile phases modified with four different
organic modifiers, methanol (MeOH), acetonitrile (ACN),
isopropanol (iPrOH) and tetrahydrofuran (THF), were used.
Table 1shows all datasets examined in the present inves-
tigation. The majority of them were taken from literature
[7–13,15,29–32].

In order to examine the effect of the nature of the organic
modifier on the retention properties of a certain group of
solutes, we studied eight catechol-related solutes, dopamine

Table 1
Datasets examined in the present investigation

Set Column Modifier Solute Reference

1 Spherisorb C18 MeOH 15 Phenols [7]
2 LiChrospher 100 RP18 MeOH 14 Benzene and 18 phenol derivatives [8]
3 Hydrodecyl column MeOH 17 Benzene derivatives [32]
4 Heptadecafluorodecyl column MeOH 17 Benzene derivatives [32]
5 Kromasil C18 MeOH Clari- and roxy-thromycin [15]
6 Nucleosil 10-RP18 MeOH Benzene, toluene, ethylbenzene [29]
7 Inertsil ODS-3 MeOH 6 Non-polar benzene derivatives [31]
8 LiChrosorb, C2 MeOH As in set 7 [31]
9 Inertsil ODS-3 MeOH 8 Catechol- and indole-related compounds Present work

10 LiChrospher 100 RP18 ACN 14 Benzene and 18 phenol derivatives [8]
11 Ultrasphere ODS ACN 9 Steroids [9]
12 LiChrospher 100 RP18 ACN 10 Peptides [10]
13 LiChrospher 100 RP18 ACN 6 Quinolones [11]
14 LiChrospher 100 RP18 ACN 15 Diuretic compounds [12]
15 LiChrospher 100 RP18 ACN 10 Peptide hormones [13]
16 Inertsil ODS-3 ACN 6 Non-polar benzene derivatives [31]
17 LiChrosorb C2 ACN As in set 16 [31]
18 Kromasil C18 ACN Clari- and roxy-thromycin [15]
19 Inertsil ODS-3 ACN 8 Catechol- and indole-related compounds Present work
20 Hypersil ODS iPrOH 6 Non-polar benzene derivatives [30]
21 Inertsil ODS-3 iPrOH 6 Non-polar benzene derivatives [31]
22 LiChrosorb C2 iPrOH As in set 20 [31]
23 Inertsil ODS-3 iPrOH 8 Catechol- and indole-related compounds Present work
24 Nucleosil 10-RP18 THF 32 Aromatic compounds [29]
25 Hypersil ODS THF 6 Non-polar benzene derivatives [30]
26 Inertsil ODS-3 THF 6 Non-polar benzene derivatives [31]
27 LiChrosorb C2 THF As in set 21 [31]
28 Inertsil ODS-3 THF 8 Catechol- and indole-related compounds Present work

(DA), serotonin (5HT), 3,4-dihydroxyphenylacetic acid
(DOPAC), 5-hydroxyindole-3-acetic acid (HIAA), vanillyl-
mandelic acid (VMA), 5-hydroxytryptophol (HTOH),
3,4-dihydroxyphenyl glycol (HPG) and homovanillic acid
(HVA), using different hydroorganic mobile phases con-
sisting of an aqueous phosphate buffer (pH 2.5) and all
the above modifiers. The total ionic strength of the mobile
phases was held constant atI = 0.02 M. All chemicals were
used as received from commercial sources. Catechol-related
compounds were available from Sigma or Aldrich. The
liquid chromatography system consisted of a Shimadzu
LC-10AD pump, a model 7125 syringe loading sample
injector fitted with a 20�l loop (Rheodyne, Cotati, CA),
a 250 mm× 4 mm MZ-Analysentechnik column (5�m
Inertsil ODS-3) thermostatted by a CTO-10AS Shimadzu
column oven at 25◦C, and a Gilson EC detector (model
141) equipped with a glassy carbon electrode. The detection
of the analytes was performed at 0.8 V versus the Ag/AgCl
reference electrode. The eluent flow rate was varied from
0.5 to 1.5 ml/min depending on the mobile phase composi-
tion. The hold-up time,t0, was measured for every mobile
phase composition by injection of water. It was found that
t0 changes in the experimental ranges of mobile phase com-
positions studied, except for the case of water-methanol
solutions. The obtained experimental data in terms of lnk
versusϕ are shown inTable 2.
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Table 2
Experimental retention values (lnk) of catechol-related compounds in aqueous mobile phases modified with methanol, acetonitrile, isopropanol and
tetrahydrofuran

ϕ DA HPG 5HT VMA DOPAC HTOH HIAA HVA t0 (min)

Methanol–water
0 1.128 1.330 2.676 2.296 3.813 4.432 4.819 5.358 1.844
0.02 0.749 1.018 2.238 1.960 3.405 3.968 4.334 4.861 1.844
0.05 0.343 0.667 1.747 1.593 2.984 3.456 3.806 4.324 1.844
0.10 −0.257 0.193 1.045 1.074 2.376 2.747 3.065 3.569 1.844
0.14 −0.681 −0.088 0.544 0.743 1.963 2.275 2.567 3.055 1.844
0.20 −1.063 −0.430 0.030 0.336 1.467 1.692 1.951 2.462 1.844
0.30 −1.631 −0.918 −0.817 −0.255 0.713 0.837 1.036 1.552 1.844
0.40 −1.925 −1.291 −1.603 −0.740 0.046 0.114 0.251 0.744 1.844
0.50 −2.117 −1.598 −1.836 −1.183 −0.594 −0.573 −0.486 −0.020 1.844

Acetonitrile–water
0 1.136 1.338 2.683 2.303 3.820 4.438 4.826 5.364 1.832
0.02 0.476 0.814 1.914 1.748 3.095 3.630 3.985 4.409 1.813
0.06 −0.290 0.095 0.831 1.009 2.141 2.576 2.888 3.244 1.771
0.10 −0.757 −0.344 0.040 0.497 1.444 1.849 2.114 2.419 1.751
0.14 −1.445 −0.348 −0.327 0.152 0.919 1.325 1.542 1.797 1.692
0.20 −2.121 −0.699 −0.450 −0.222 0.326 0.724 0.883 1.074 1.634
0.30 −2.874 −1.106 −1.628 −0.314 −0.182 0.149 0.252 0.389 1.523

Isopropanol–water
0 1.136 1.338 2.683 2.303 3.820 4.438 4.826 5.364 1.832
0.02 −0.313 0.385 1.044 1.116 2.413 2.860 3.151 3.523 1.762
0.04 −1.075 −0.156 0.192 0.525 1.718 2.057 2.305 2.661 1.761
0.06 −1.521 −0.441 −0.305 0.186 1.304 1.568 1.792 2.145 1.740
0.10 −2.171 −0.782 −0.787 −0.282 0.712 0.884 1.064 1.417 1.736
0.14 −3.097 −1.026 −1.254 −0.605 0.285 0.397 0.541 0.886 1.749
0.20 −3.451 −1.282 −2.007 −0.862 −0.132 −0.066 0.035 0.338 1.734
0.30 −5.827 −1.736 −3.429 −1.192 −0.680 −0.650 −0.566 −0.333 1.697

Tetrahydrofuran–water
0 1.136 1.338 2.683 2.303 3.820 4.438 4.826 5.364 1.832
0.01 0.007 0.763 1.378 1.675 2.935 3.268 3.664 3.856 1.760
0.02 −0.419 0.539 0.892 1.443 2.634 2.849 3.249 3.381 1.749
0.04 −0.890 0.270 0.339 1.150 2.270 2.373 2.768 2.849 1.710
0.06 −1.226 0.096 −0.022 0.947 2.020 2.065 2.461 2.496 1.707
0.10 −1.584 −0.074 −0.261 0.700 1.720 1.717 2.104 2.100 1.657
0.14 −1.809 −0.141 −0.625 0.560 1.498 1.456 1.764 1.840 1.623
0.20 −2.138 −0.247 −1.145 0.298 1.223 1.105 1.492 1.387 1.577
0.30 −2.323 −0.299 −1.787 0.055 0.822 0.606 0.956 0.909 1.439

4. Data analysis

The analysis of data was carried out at Microsoft Ex-
cel spreadsheets using Solver for all fittings. The minimised
quantity was the sum of squares of residuals, SSR= σ2(N−
p), and independently the value ofs from Eq. (25), be-
cause ifs is used as a measure of the fitting performance
of an equation, then the minimisation ofs is expected to
give better results. For fitting all data of a set of solutes
to a certain equation, a suitable macro has been written.
This macro: (a) calls Solver to find the fitting parameters
for a certain solute by minimising SSR and the same pro-
cedure is followed by minimisings; (b) stores the fitting
parameters and the values of SSR,σ ands at a predefined
region at the spreadsheet; and (c) changes the solute data
and repeats steps (a) and (b) until all solutes have been
treated.

Values of theEN
T factor, necessary for testingEq. (1),

were taken from literature[6,8]. In particular, we used the
EN

T values suggested by Bosch et al.[8] for methanol-water
solutions and the correctedEN∗

T values for the entire range
of ϕ values for acetonitrile–water solutions used by the same
authors. The above data were fitted toEq. (7) and the ob-
tained values ofp and be are listed inTable 3. Note that

Table 3
Values of p and be of Eq. (7) obtained from fitting this equation to
experimentalEN

T data

Mobile phase p be σ

Methanol–water 0.40 0.83 0.0009
Acetonitrile–water 0.51 1.1 0.003
Isopropanol–water 0.51 1.6 0.009
Tetrahydrofuran–water 0.54 1.9 0.009
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Table 4
Common values of parameterb calculated fromEq. (5)

Set Mr Common value ofb per set of substances at each modifier

MeOHa (0.2)b ACNa (2.0)b iPrOHa (3.0)b THFa (1.0)b

9, 19, 23, 28 180 2.0 7.0 15 25
7, 16, 21, 26 110 0 1.0 2.0 2.0
8, 17, 22, 27 110 0.2 1.0 4.5 1.5
5, 18 800 0.2 15
2, 10 140 0.7 2.5
1 150 0.2
3 110 −0.4
4 110 −0.2
6 90 0

11 300 8
12 250 5
13 330 11
14 330 6
15 1600 32
20, 25 100 2.0 1.5
24 130 0.6

a Modifier.
b Common value ofb for all substances at each modifier.

almost the same results have been suggested by Roses and
Bosch[7] for the calculation ofEN

T values.EN
T values for

aqueous solutions of isopropanol and tetrahydrofuran were
calculated from non-normalisedET(30) values taken from
[6] using the normalisation equation suggested by Reichardt
and Harbusch-Görnert[33]. The obtainedEN

T values were
fitted toEq. (7) for ϕ ≤ 0.8 yielding thep andbe values of
Table 3. Therefore, for testingEq. (1) the EN

T values were
obtained fromEq. (7)using thep andbe values ofTable 3.
Note that in this case,Eq. (1) is identical toEq. (8), which
for applications needs only the value ofbe.

Eqs. (2) and (5)were treated as three- and two-parameter
equations. In the latter case, we examined two sub-cases:
parameterb takes a common value for all substances at each
modifier or a common value per group of structurally simi-
lar substances at each modifier. These common values ofb
were determined as follows.Eqs. (2) and (5)were initially
treated as three-parameter equations andb was determined
by means of Microsoft Excel Solver for each solute and mod-
ifier. Then, for each modifier the mean value ofb was cal-
culated excluding any extreme values ofb. The mean value
of b thus obtained was further used to refitEqs. (2) and (5)
to the same experimental dataset, in order to estimate the
fitting performance of this equation whenb takes a constant
value for all substances at a certain modifier. The same pro-
cedure was followed for the determination of a meanb value
per group of structurally similar substances at each modifier.
For simplicity, we treated approximately each set of solutes
of Table 1as a group of structurally similar substances. The
common values ofb calculated fromEq. (5) are given in
Table 4. Eq. (2) gave similar results except for the case of
set 19, where we found a very highb value (b = 105).

Finally, in order to determine the best values ofbt and
b∗ of Eq. (21), we worked as follows. We first selected

as model experimental systems the datasets 8, 17, 22 and
27, because: (a) the solutes of these sets have small and
non-polar molecules; and (b) the study using a C2 column
ensures the validity of the adsorption model for retention;
the short length of the carbon chains does not leave much
space in the stationary phase for the solute molecules.
Therefore, for these systems we may assume thatbs is close
to be, because the discreteness effect should be small and
the surface solution is likely to have a structure similar to
that of the mobile phase. Under these assumptions, we fitted
the experimental data of sets 8, 17, 22 and 27 toEq. (19)us-
ing b∗ = β(1+ be)− 1 and tried to determine a mean value
for β. This has been succeeded to methanol and acetoni-
trile solutions, where we foundβ = 3 and 15, respectively,
yielding b∗ = 4.5 for methanol–water andb∗ = 30 for
acetonitrile–water mobile phases. Next using these values of
b∗ in Eq. (21), we examined if small alterations in the val-
ues ofbt aroundbe yield better results. The values ofbt thus
obtained together with theb∗ values are given inTable 5.
For mobile phases modified with isopropanol and tetrahy-
drofuran, the above method did not work, because Solver
could not converge whenEq. (19)was used to fit the ex-
perimental data. For this reason, we attempted to determine
parametersbt and b∗ of Eq. (21) by direct application of
this equation to all experimental data in isopropanol–water

Table 5
Values ofbt and b∗ suggested for use inEqs. (21) and (22)

Mobile phase bt b∗

Methanol–water 1 4.5
Acetonitrile–water 2 30
Isopropanol–water 2 40
Tetrahydrofuran–water 2 60
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Fig. 2. Plots of lnk vs. ϕ for TE (�) retention in MeOH using C2
column, and HTOH (�) retention in THF using C18 column. Points are
experimental data and solid lines are constructed using the best fit of
Eq. (1) (σ = 0.1844) andEq. (2) (σ = 0.144), respectively.

and tetrahydrofuran–water mobile phases. The macro, we
used for fittings, simplified significantly this attempt and
the values ofbt and b∗ obtained are listed inTable 5.
Note that the same values ofbt were used in both
Eqs. (21) and (22).

5. Results and discussion

Tables 6 and 7show the number of systems exhibiting
σ < 0.2 and s < 0.05. From these tables, several con-
clusions can be drawn. The first is related to the criteria
σ < 0.2 ands < 0.05. It is seen that the performance of
an equation depends on the above criteria. For example, for
mobile phases modified with methanol, the performance of
Eq. (1)is quite satisfactory if we adopt the criterionσ < 0.2,
since it describes 79% of the systems, but it becomes very
poor (79% becomes 39%) if we evaluate the fitting perfor-
mance by the conditions < 0.05. In order to have a pic-
ture of the meaning ofσ < 0.2, Fig. 2 depicts plots of lnk
versusϕ for: (a) tert-butylbenzene (TE) in mobile phases
modified with methanol when a C2 column is used; and (b)
5-hydroxytryptophol (HTOH) in THF mobile phases using
a C18 column. In this figure, the points represent experimen-
tal data and the lines were calculated from the best fits of
Eqs. (1) and (2), respectively. For these fits, the values of
σ are 0.184 and 0.144, respectively. It is seen that the fit-
ted equations describe quite satisfactorily the experimental
data. Therefore, we may conclude that a fit characterised by
σ < 0.2 is at least an acceptable fit. However,Tables 8 and 9
show that the predicted fromEqs. (1) and (2)retention times
deviate significantly from the experimental values whentR
> ∼30 min and consequently these equations fail to predict
the retention of these substances atϕ values that yieldtR >
∼30 min.

In general, when we fit lnk versusϕ data to an equa-
tion and then use the fitted equation to calculatetR versusϕ
data, there is a problem with the accuracy of the predicted
tR values whentR is high enough (at lowϕ values) for the
following reason: The errorδ(tR) between predicted and cal-
culatedtR values and the corresponding error in lnk, δ(ln k),
are interrelated through the relationship:

d(ln k) = dtR
t0k

⇒ δ(tR) = (tR − t0)k δ(ln k) (26)

Therefore, for the same error in lnk (δ(ln k)) imposed by
the fitting procedure of the lnk versusϕ data, the higher the
value oftR, the bigger the error in its predictive value,δ(tR).

It is seen that the criterionσ < 0.2 as well as the lnk
versusϕ plots may be quite misleading in what concerns
the performance of a fitting equation. Consequently, we may
either reduce further the value ofσ, for exampleσ < 0.1, or
use the criterions < 0.05. The latter has the advantage that
it is directly related to the error intR, since it gives that the
average absolute error in the retention time is less than 5%.

Note also that in general when we minimise SSR orσ to
obtain the best fit of lnk versusϕ data, the predictedtR val-
ues are close to the experimental ones in the region of low
tR, whereas at hightR values significant deviations between
predicted and experimentaltR values may be detected. This
behaviour is completely inverted if we minimises to obtain
the best fit of lnk versusϕ data. Thus, it is a personal judge-
ment not only the selection of the proper fitting equation but
also the selection of the minimised quantity, SSR ors.

In what concerns the fitting capabilities of the equations
we examined, it is seen that, in general, the performance of
the two-parameterEqs. (1), (8) and (12)is very poor, since,
according to thes criterion, these equations describe satis-
factorily only 44 and 40% of the systems studied, respec-
tively. The performance of the two-parameterEqs. (2) and
(5) is somehow better: these equations give a good represen-
tation of 54 and 57% of the systems and this percentage is
increased to 71 and 78%, respectively, if we use commonb
values for each set of solutes ofTable 1. The latter percent-
ages would be expected to be increased if we used a com-
monb value per structurally similar group of solutes at each
modifier. It is also evident that the above percentages are
increased if we decrease the range of theϕ values, whereas
if we could increase the range ofϕ, the performance of all
equations would deteriorate. From this point of view, our re-
sults agree with the observation made by Cheong and Carr
[6] that Eq. (1) can give good results only over a narrow
range of solvent composition.

FromTables 6 and 7we observe thatEq. (12)is slightly
worse thanEq. (1). At first sight this is an unexpected result,
becauseEq. (12)is a refinement ofEq. (1), as shown in the
theoretical part. However, this inconsistency can be easily
explained if we take into account that the performance of
all simple equations studied in the present work is not as-
sociated with the model they represent. They are all based
on such rough approximations that, in fact, they do not rep-
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Table 6
Number of systems and their corresponding percentage exhibitingσ < 0.2 ands < 0.05 at each mobile phase

Equation σ < 0.2a s < 0.05b s < 0.05c Percentages

Methanol–water, number of solutes 106
Two-parameter

(1)≡(8) 84 41 33 79.2 38.7 31.1
(12) 76 37 27 71.7 34.9 25.5
(2)d 96 65 51 90.6 61.3 48.1
(2)e 104 79 77 98.1 74.5 72.6
(5)d 93 69 55 87.7 65.1 51.9
(5)e 104 81 77 98.1 76.4 72.6

Three-parameter
(2)f 105 95 87 99.1 89.6 82.1
(5)f 105 95 87 99.1 89.6 82.1
(21) 104 94 88 98.1 88.7 83.0
(22) 105 87 83 99.1 82.1 78.3
(23) 105 94 90 99.1 88.7 84.9

Acetonitrile–water, number of solutes 104
Two-parameter

(1)≡(8) 63 48 44 60.6 46.2 42.3
(12) 71 58 51 68.3 55.8 49.0
(2)d 77 49 42 74.0 47.1 40.4
(2)e 89 67 63 85.6 64.4 60.6
(5)d 75 53 42 72.1 51.0 40.4
(5)e 97 84 78 93.3 80.8 75.0

Three-parameter
(2)f 92 83 78 88.5 79.8 75.0
(5)f 99 97 87 95.2 93.3 83.7
(21) 101 100 89 97.1 96.2 85.6
(22) 100 89 86 96.2 85.6 82.7
(23) 94 81 82 90.4 77.9 78.8

Isopropanol–water, number of solutes 26
Two-parameter

(1)≡(8) 14 9 8 53.8 34.6 30.8
(12) 17 10 9 65.4 38.5 34.6
(2)d 17 10 9 65.4 38.5 34.6
(2)e 24 19 11 92.3 73.1 42.3
(5)d 18 11 9 69.2 42.3 34.6
(5)e 24 18 11 92.3 69.2 42.3

Three-parameter
(2)f 24 25 17 92.3 96.2 65.4
(5)f 24 24 15 92.3 92.3 57.7
(21) 24 22 19 92.3 84.6 73.1
(22) 18 18 16 69.2 69.2 61.5
(23) 18 10 10 69.2 38.5 38.5

Tetrahydrofuran–water, number of solutes 57
Two-parameter

(1)≡(8) 28 31 24 49.1 54.4 42.1
(12) 14 13 3 24.6 22.8 5.3
(2)d 39 34 29 68.4 59.6 50.9
(2)e 48 44 42 84.2 77.2 73.7
(5)d 37 35 29 64.9 61.4 50.9
(5)e 48 46 42 84.2 80.7 73.7

Three-parameter
(2)f 50 51 48 87.7 89.5 84.2
(5)f 47 51 48 82.5 89.5 84.2
(21) 53 55 51 93.0 96.5 89.5
(22) 43 48 45 75.4 84.2 78.9
(23) 46 46 44 80.7 80.7 77.2

a Minimisation of SSR and then calculation ofσ.
b Minimisation of s.
c Minimisation of SSR and then calculation ofs.
d b takes a common value fromTable 3for all substances in each modifier.
e b takes a common value per group of substances at each modifier fromTable 4.
f b is treated as adjustable parameter.
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Table 7
Number of systems and their corresponding percentage exhibitingσ < 0.2 ands < 0.05 for all systems (293) studied

Equation σ < 0.2a s < 0.05b s < 0.05c Percentages

Two-parameter
(1)≡(8) 189 129 109 64.5 44.0 37.2
(12) 178 118 90 60.8 40.3 30.7
(2)d 229 158 131 78.2 53.9 44.7
(2)e 265 209 193 90.4 71.3 65.9
(5)d 223 168 135 76.1 57.3 46.1
(5)e 273 229 208 93.2 78.2 71.0

Three-parameter
(2)f 271 254 230 92.5 86.7 78.5
(5)f 275 267 237 93.9 91.1 80.9
(21) 282 271 247 96.2 92.5 84.3
(22) 266 242 230 90.8 82.6 78.5
(23) 263 231 226 89.8 78.8 77.1

a Minimisation of SSR and then calculation ofσ.
b Minimisation of s.
c Minimisation of SSR and then calculation ofs.
d b takes a common value fromTable 3for all substances in each modifier.
e b takes a common value per group of substances at each modifier fromTable 4.
f b is treated as adjustable parameter.

Table 8
Experimental and predicted fromEq. (1) retention times (tR in min) that correspond toFig. 2

ϕ

0.40 0.50 0.60 0.70 0.75 0.80 0.85 0.90 0.95 1.00

texp 259.60 78.06 28.06 11.49 7.76 5.98 4.69 4.03 3.51 3.28
tpred 207.89 64.19 23.92 10.88 7.93 6.10 4.93 4.16 3.65 3.30
δta (min) 51.71 13.87 4.14 0.61 0.17 0.12 0.23 0.13 0.14 0.02
%δtb 19.92 17.76 14.76 5.35 2.20 1.98 4.95 3.33 3.89 0.61

a Absolute difference between predicted and experimental retention times.
b Percentage error in the predicted retention time.

resent the retention mechanism, whatever this mechanism
is. Therefore, a refinement of an approximation involved
in these equations or the inclusion of a certain effect does
not necessarily entail the improvement of the fitting perfor-
mance of the modified equation. In fact, this improvement is
a blind process, which is verified or not from the application
of the modified equation to as many systems as possible. In
this respect, the better performance ofEq. (5)when we use
a commonb values for each structurally similar group of so-
lutes at each modifier may show an effective way to account
for discreteness effects. The fact thatb as a rule increases

Table 9
Experimental and predicted fromEq. (2) retention times (tR in min) that correspond toFig. 2

ϕ

0 0.01 0.02 0.04 0.06 0.1 0.14 0.2 0.3

texp 156.9 47.98 31.95 20.05 15.17 10.88 8.59 6.34 4.08
tpred 138.68 57.73 37.08 21.68 15.73 10.20 7.72 5.79 4.03
δta (min) 18.22 9.75 5.13 1.63 0.56 0.68 0.87 0.55 0.04
%δtb 11.61 20.32 16.06 8.14 3.69 6.25 10.10 8.67 1.10

a Absolute difference between predicted and experimental retention times.
b Percentage error in the predicted retention time.

with the increase in the mean molecular weight of the so-
lutes at the various sets (seeTable 4andFig. 3) is a strong
evidence that this is due to the discreteness effect. However,
another significant factor responsible for the performance of
Eq. (5)should be the fact that whenb is determined for each
set of solutes,Eq. (5) is no more a purely two-parameter
equation; we first treat it as a three-parameter equation and
next determine the mean value ofb for each set.

The performance ofEq. (5) is increased considerably
if we use it as a three-parameter equation. In general, all
the three-parameter equations give good results, since their
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Fig. 3. Linear relationship between parameterb calculated from fitting
Eq. (5) to each set ofTable 1 when ACN is used as modifier and the
mean molecular weight of the solutes of these sets.

applicability ranges from 80 to 90%, according to thes cri-
terion. From the three-parameter equations, the best per-
formance is exhibited byEq. (21). This equation combines
two advantages: the linearity of the adjustable parameters
of Eq. (23), provided thatbt and b∗ are known at a cer-
tain modifier, and the high fitting capabilities of the rational
functions, likeEq. (5). It is also free from the convergence
problems of the non-linearEqs. (2) and (5). For example,
such problem appeared when we fittedEq. (2) to sets 11
and 12. In addition, the predicted lnk versusϕ curves by
Eq. (21)are quite smooth and free from physically meaning-
less portions, which are usually met in polynomial fittings.
The superiority ofEq. (21) in relation to the conventional
Eq. (23)is shown inFig. 4.
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Fig. 4. Plots of lnk vs. ϕ for VMA ( �) and DA (�) retention in THF.
Points are experimental data, solid lines correspond to the best fit of
Eq. (21), and dotted lines to the best fit ofEq. (23).

6. Conclusions

The performance of two-parameter equations to fit lnk
uponϕ experimental data is quite poor. Thus, the conven-
tional Eq. (1) (identical toEq. (8)) describes only 44% of
the systems studied if the performance criterions < 0.05 is
adopted. The results are improved if we useEq. (5) andb
takes either a common value for each modifier or even bet-
ter a common value per group of structurally similar solutes
at each modifier. In the latter case, which is associated with
the discreteness effect in the solute–solvent interactions, the
applicability is extended to ca. 78% of the systems stud-
ied. The low performance of the two-parameter equations
is attributed to the rough approximations involved in their
derivation. However, if we like to keep the expression of
these equations as simple as possible for practical purposes,
then any modification of the two-parameter equations in-
volves additional rough approximations. Despite this limi-
tation, we found that a new three-parameter expression of
ln k, Eq. (21)works more satisfactorily, since it combines
simplicity, linearity of the adjustable parametersm′, n′ and
q′ and the highest applicability describing satisfactorily
more than 90% of the systems. Note that in this equation the
generalbt and b∗ parameters depend exclusively upon the
modifier. Their values for the four common reversed-phase
organic modifiers, MeOH, ACN, iPrOH and THF, are listed
in Table 5, whereas for other solvents they should be deter-
mined following the procedure suggested in this paper.

Finally, we should point out that the above results are in-
dicative. Thus, the performance of all equations is consider-
ably improved if we use narrow ranges ofϕ values, whereas
it deteriorates if we consider that the accuracy of 5% in
retention times is insufficient for component identification
and make more stringent this criterion. For example, if we
adopt the criterions < 0.025, then the applicability of the
three-parameter equations falls below 60% of the systems
studied, whereas the corresponding percentage ofEq. (1)de-
creases from 44% (s < 0.05) to 19%. Therefore, we should
be very careful when we choose a certain equation in an
optimisation technique.

Appendix A

FromFig. 1, we obtain that:

(EN
T )ef = 1 + pefϕ

1 + bef
e ϕ

≤ 1 + pϕ

1 + beϕ
= EN

T (A.1)

where(EN
T )ef is the effectiveEN

T factor due to the discrete-
ness effect. Note that the inequality is valid throughout the
range ofϕ values apart fromϕ = 0 andϕ ≈ 1. At ϕ ≈ 1, we
have(1+ pef)/(1+ bef

e ) = (1+ p)/(1+ be), which yields:

pef = (1 + p)(1 + bef
e )

1 + be
− 1 (A.2)
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In addition, inequality (A.1) gives:pef + be + bep
efϕ <

p+ bef
e + pbef

e ϕ, which in the region of very smallϕ values
(ϕ ≈ 0) results in:

pef + be < p + bef
e (A.3)

Now substitution ofpef from Eq. (A.2) into Eq. (A.3) and
rearrangement yields:

(p − be)(b
ef
e − be)

1 + be
< 0 (A.4)

which shows thatbef
e is higher thanbe (bef

e > be), becausep
is always lower thanbe since the inequalityp − be < 0 is
the necessary and sufficient condition for theEN

T versusϕ
curve to be concave up. For simplicity, in the main text,bef

e
is denoted byb.
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